244 research outputs found

    Chip-scale packages for a tunable wavelength reference and laser cooling platform

    Get PDF
    We demonstrate a tunable, chip-scale wavelength reference to greatly reduce the complexity and volume of cold-atom sensors. A 1-mm optical path length microfabricated cell provides an atomic wavelength reference, with dynamic frequency control enabled by Zeeman-shifting the atomic transition through the magnetic field generated by the printed-circuit-board coils. The dynamic range of the laser frequency stabilization system is evaluated and used in conjunction with an improved generation of chip-scale cold-atom platforms that traps 4 million 87Rb atoms. The scalability and component consolidation provide a key step forward in the miniaturization of cold-atom sensors

    Game Theoretical Interactions of Moving Agents

    Full text link
    Game theory has been one of the most successful quantitative concepts to describe social interactions, their strategical aspects, and outcomes. Among the payoff matrix quantifying the result of a social interaction, the interaction conditions have been varied, such as the number of repeated interactions, the number of interaction partners, the possibility to punish defective behavior etc. While an extension to spatial interactions has been considered early on such as in the "game of life", recent studies have focussed on effects of the structure of social interaction networks. However, the possibility of individuals to move and, thereby, evade areas with a high level of defection, and to seek areas with a high level of cooperation, has not been fully explored so far. This contribution presents a model combining game theoretical interactions with success-driven motion in space, and studies the consequences that this may have for the degree of cooperation and the spatio-temporal dynamics in the population. It is demonstrated that the combination of game theoretical interactions with motion gives rise to many self-organized behavioral patterns on an aggregate level, which can explain a variety of empirically observed social behaviors

    Dark soliton states of Bose-Einstein condensates in anisotropic traps

    Full text link
    Dark soliton states of Bose-Einstein condensates in harmonic traps are studied both analytically and computationally by the direct solution of the Gross-Pitaevskii equation in three dimensions. The ground and self-consistent excited states are found numerically by relaxation in imaginary time. The energy of a stationary soliton in a harmonic trap is shown to be independent of density and geometry for large numbers of atoms. Large amplitude field modulation at a frequency resonant with the energy of a dark soliton is found to give rise to a state with multiple vortices. The Bogoliubov excitation spectrum of the soliton state contains complex frequencies, which disappear for sufficiently small numbers of atoms or large transverse confinement. The relationship between these complex modes and the snake instability is investigated numerically by propagation in real time.Comment: 11 pages, 8 embedded figures (two in color

    Creating a community of praxis: integrating global citizenship and development education across campus at University College Cork

    Get PDF
    The Praxis Project, established at University College Cork (UCC), Ireland, in 2018, seeks to assess possible models of best practice with regard to the integration of global citizenship and development education (GCDE) into a cross-disciplinary, cross-campus, interwoven set of subject area pedagogies, policies and practices. This study – the first part of an eventual three-part framework – asserts that the themes, theories, values, skills, approaches and methodologies relevant to transformative pedagogical work are best underpinned by ongoing staff dialogue in order to build communities of support around such systemic pedagogical change. This article is based on a collaborative study with the first cohort of UCC staff (2020–1), which demonstrates many ways in which staff and students realised that smaller actions and carefully directed attention to specific issues opened doors to transformative thinking and action in surprising ways. From this viewpoint, the striking need emerged for taking a strategic approach to how GCDE is, and should be, integrated into learning across subject areas

    Bose condensates in a harmonic trap near the critical temperature

    Full text link
    The mean-field properties of finite-temperature Bose-Einstein gases confined in spherically symmetric harmonic traps are surveyed numerically. The solutions of the Gross-Pitaevskii (GP) and Hartree-Fock-Bogoliubov (HFB) equations for the condensate and low-lying quasiparticle excitations are calculated self-consistently using the discrete variable representation, while the most high-lying states are obtained with a local density approximation. Consistency of the theory for temperatures through the Bose condensation point requires that the thermodynamic chemical potential differ from the eigenvalue of the GP equation; the appropriate modifications lead to results that are continuous as a function of the particle interactions. The HFB equations are made gapless either by invoking the Popov approximation or by renormalizing the particle interactions. The latter approach effectively reduces the strength of the effective scattering length, increases the number of condensate atoms at each temperature, and raises the value of the transition temperature relative to the Popov approximation. The renormalization effect increases approximately with the log of the atom number, and is most pronounced at temperatures near the transition. Comparisons with the results of quantum Monte Carlo calculations and various local density approximations are presented, and experimental consequences are discussed.Comment: 15 pages, 11 embedded figures, revte

    Solutions of Gross-Pitaevskii equations beyond the hydrodynamic approximation: Application to the vortex problem

    Full text link
    We develop the multiscale technique to describe excitations of a Bose-Einstein condensate (BEC) whose characteristic scales are comparable with the healing length, thus going beyond the conventional hydrodynamical approximation. As an application of the theory we derive approximate explicit vortex and other solutions. The dynamical stability of the vortex is discussed on the basis of the mathematical framework developed here, the result being that its stability is granted at least up to times of the order of seconds, which is the condensate lifetime. Our analytical results are confirmed by the numerical simulations.Comment: To appear in Phys. Rev.

    Spallation reactions. A successful interplay between modeling and applications

    Get PDF
    The spallation reactions are a type of nuclear reaction which occur in space by interaction of the cosmic rays with interstellar bodies. The first spallation reactions induced with an accelerator took place in 1947 at the Berkeley cyclotron (University of California) with 200 MeV deuterons and 400 MeV alpha beams. They highlighted the multiple emission of neutrons and charged particles and the production of a large number of residual nuclei far different from the target nuclei. The same year R. Serber describes the reaction in two steps: a first and fast one with high-energy particle emission leading to an excited remnant nucleus, and a second one, much slower, the de-excitation of the remnant. In 2010 IAEA organized a worskhop to present the results of the most widely used spallation codes within a benchmark of spallation models. If one of the goals was to understand the deficiencies, if any, in each code, one remarkable outcome points out the overall high-quality level of some models and so the great improvements achieved since Serber. Particle transport codes can then rely on such spallation models to treat the reactions between a light particle and an atomic nucleus with energies spanning from few tens of MeV up to some GeV. An overview of the spallation reactions modeling is presented in order to point out the incomparable contribution of models based on basic physics to numerous applications where such reactions occur. Validations or benchmarks, which are necessary steps in the improvement process, are also addressed, as well as the potential future domains of development. Spallation reactions modeling is a representative case of continuous studies aiming at understanding a reaction mechanism and which end up in a powerful tool.Comment: 59 pages, 54 figures, Revie

    Numerical representation of quantum states in the positive-P and Wigner representations

    Full text link
    Numerical stochastic integration is a powerful tool for the investigation of quantum dynamics in interacting many body systems. As with all numerical integration of differential equations, the initial conditions of the system being investigated must be specified. With application to quantum optics in mind, we show how various commonly considered quantum states can be numerically simulated by the use of widely available Gaussian and uniform random number generators. We note that the same methods can also be applied to computational studies of Bose-Einstein condensates, and give some examples of how this can be done.Comment: 16 pages, single column forma
    corecore